作者 | Frank Wilczek
翻译 | 胡风、梁丁当
孕育了众多新物理的极低温,或许也是计算机技术取得新突破的关键。
现代制冷技术在很多方面改变了我们的生活。借助冷藏技术,我们得以品尝到来自全球各地的食物——无论是当季的还是反季节的;有了空调,家和汽车也变成了三伏天的避暑场所。
相比于古老的冰块制冷,这些技术无疑是重大的进步。在用冰制冷的年代,曾形成过工业规模的冰块开采。我经常散步的地方——马萨诸塞州剑桥的弗雷什塘(Fresh Pond),就曾经是一个冰矿。
将物体放到冰上冷却,其物理原理是较简单直接的。由于能量总是从高能态往低能态流动,热量会从较热的物体传递到冰上,结果就是前者变冷、后者融化。
更先进的制冷方法则更难实现,因为这需要从物体中抽取能量并转移到周围环境中,从而保持物体比周围环境温度更低。要实现这一点,就必须输入能量。这一点看似矛盾,但借助热力学定律确实能实现。较为廉价的能源,再加上出色的工业设计,注定了冰工业的衰落。
极低温仍然是发现新物理的重要领域。物体在极低的温度下呈现出明显的量子效应。量子力学的一个主要特征是能量只能取离散的值,即某个能量单位的整数倍。要观测到这种量子性, 这个倍数必须足够小:1000002个能量单位和1000003个能量单位没有本质不同,但如果是2个和3个能量单位,就会存在根本性的差别了。超冷材料的能量极低,在这种场景中量子力学的神奇定律能够充分发挥它的魔力。
在接近绝对零度时,很多金属和一些其他物质会突然变成超导态。超导材料中的电流没有电阻,所以只需要很少的能耗——甚至零能耗——就能维持。这个美丽的性质赋予了超导材料很多用途,比如,它可以用于制造核磁共振成像(MRI)所需的强力电磁铁。
类似地,液氦在低温下会转变成超流体,从而在没有摩擦阻力的理想情况下传输质量。因此,液氦是制 造低温冰箱的理想材料,而液氦超流已经成为了现代低温技术的主力军。
信息处理是另一个非常活跃的低温物理前沿。现代计算机是通过电流工作的,而电流的热效应是制约计算机发展的一个主要因素。目前研究人员正在研究如何用信息“超流” 在没有热损耗的情况下传输数据。
此外,计算中的许多重要问题,比如如何优化配电网络或者航线规划系统,都可以转化为“制冷”的问题来思考。将一个问题数字化后,问题和(可能的)答案都成了一长串由0和1组成的编码。我们可以把这些二进制码翻译成一个物理系统:0和1分别对应一个开关的“关”和“开”,或者是电子的“自旋向上”和“自旋向下”两种状态。
通过这种“物理化”的编程,我们可以把问题和答案分别对应到一个物理系统和它的状态上。其中,能量最低的那个态对应的就是最佳答案。
制冷需要考虑多方面的因素,例如温度的高低、系统是处于大自然还是人工环境中。这些都不断地挑战着人们的聪明才智。发明新的冰箱和空调或许是计算机技术取得新突破的关键。这让我在夏天游泳的时候有了新的思考目标。