Kim Siang Khaw/ Tenure-track Fellow
Particle and Nuclear Physics Division
N669 kimsiang84 AT sjtu.edu.cn http://web.tdli.sjtu.edu.cn/kimsiang84/

Educational Background

  • 2011- 2015, ETH Zurich, Switzerland , Doctor
  • 2009- 2011, University of Tokyo, Japan , Master
  • 2005- 2009, Kyoto University, Japan , Bachelor

Work Experience

  • 2019-Now, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, T. D. Lee Fellow
  • 2019-Now, School of Physics and Astronomy, Shanghai Jiao Tong University, Tenure-track Associate Professor
  • 2015-2025, School of Physics and Astronomy, Shanghai Jiao Tong University, Postdoctoral Research Associate
  • 2011-2025, ETH Zurich, Switzerland, Graduate Research Assistant

Research Interests

  • Physics beyond the Standard Model
  • Precision Muon Physics
  • Anomalous magnetic moments and electric dipole moments
  • Muon cooling and muonium production
  • Dark matter and dark photon physics

Honorary Information

  • 2018 Fundamental Physics Innovation Awards, Gordon and Betty Moore Foundation and the American Physical Society
  • 2018 URA Travel Grant, 51st Annual Users Meeting, Fermilab
  • 2018 Finalist, UW Postdoc Mentoring Award, University of Washington
  • 2016-2019 Visiting Scholars Award, Universities Research Association (URA)
  • 2010 Participation Grant, CERN School of Computing, CSC 2010
  • 2010 Program for Young Researcher Overseas Visits, University of Tokyo
  • 2004-2011 Japanese Government Scholarship for Undergraduate and Master Studies

Representative Papers And Monographs

  • Search for the muon electric dipole moment using frozen-spin technique at PSI, arXiv:2201.08729 [hep-ex]
  • Muon g−2: a review, A. Keshavarzi, K. S. Khaw and T. Yoshioka, Nucl. Phys. B 975 (2022) 115675
  • Muon spinning its way to new physics, by K. S. Khaw, L. Li and J. Shu, Front. Phys. (Beijing) 16 (2021) 6, 64602
  • Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, B. Abi et al., Phys. Rev. Lett. 126, 141801 (2021)
  • Magnetic-field measurement and analysis for the Muon g-2 Experiment at Fermilab, T. Albahri et al., Phys. Rev. A 103, 042208 (2021)
  • Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment, T. Albahri et al,, Phys. Rev. D 103, 072002 (2021)
  • Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab, T. Albahri et al., Phys. Rev. Accel. Beams (2021)
  • Search for a muon EDM using the frozen-spin technique, by A. Adelmann et al., arXiv:2102.08838 [hep-ex]
  • Demonstration of Muon-Beam Transverse Phase-Space Compression, by A. Antognini et al., Phys. Rev. Lett. 125, 164802 (2020)
  • Performance of the Muon g-2 calorimeter and readout systems measured with test beam data, by K.S. Khaw et al., NIM A 945, 162558 (2019)
  • muCool: A next step towards efficient muon beam compression, by I. Belosevic et al., Eur. Phys. J. C79, 430 (2019)
  • Muon g-2 reconstruction and analysis framework for the muon anomalous precession frequency, by K. S. Khaw, J. Phys. Conf. Ser. 1085 032039 (2018)
  • Design and performance of SiPM-based readout of PbF2 crystals for high-rate, precision timing applications, by J. Kaspar et al., JINST 12 P01009 (2017)
  • Spatial confinement of muonium atoms, by K. S. Khaw et al., Phys. Rev. A 94, 022716 (2016)
  • Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the mSR spectrometer, by K. S. Khaw et al., JINST 10 P100025 (2015)
  • Muon cooling: Longitudinal compression, by Y. Bao et al., Phys. Rev. Lett. 112, 224801 (2014)
  • Muonium emission into vacuum from mesoporous thin films at cryogenic temperatures, by A. Antognini et al., Phys. Rev. Lett. 108, 143401 (2012)